

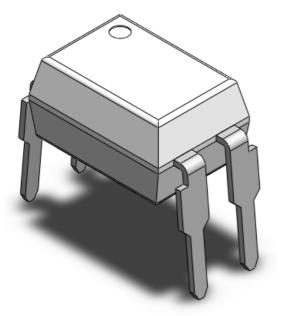
Features

High isolation 5000 VRMS

CTR : Min 1000%

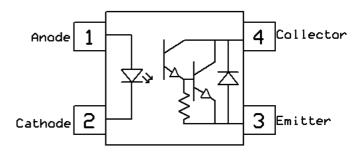
High B_{VCEO} = 350V

Operating temperature range - 55 ℃ to 110 ℃


Applications

- Switch mode power supplies
- Computer peripheral interface
- Microprocessor system interface
- Controller for SSR, DC Motor
- Telephone Line Interface

Description


The CT852 series consists of high voltage photodarlington optically coupled to a gallium arsenide Infrared-emitting diode in a 4-lead DIP package with bending options.

Package Outline

Note: Different lead forming options available. See package dimension.

Schematic

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes			
V _{ISO}	Isolation voltage	5000	V _{RMS}				
T _{OPR}	Operating temperature	-55 ~ +100	°C				
T _{STG}	Storage temperature	-55 ~ +150	°C				
T _{SOL}	Soldering temperature	260	°C				
Emitter			•				
I _F	Forward current	80	mA				
I _{F(TRANS)}	Peak transient current (≤1µs P.W,300pps)	1	Α				
V _R	Reverse voltage	6	V				
P _D	Power dissipation	150	mW				
Detector	Detector						
P _D	Power dissipation	300	mW				
Bvceo	Collector-Emitter Breakdown Voltage	350	V				
Bveco	Emitter-Collector Breakdown Voltage	0.1	V				
Ic	Collector Current	150	mA				

Electrical Characteristics

T_A = 25 °C (unless otherwise specified)

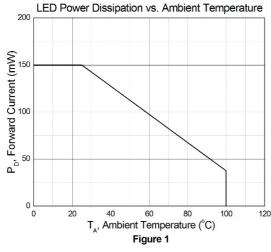
Emitter Characteristics

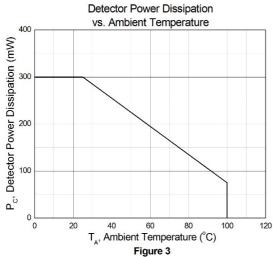
Symbol Parameters		Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	I _F =10mA		1.2	1.4	٧	
I _R	Reverse Current	V _R = 5V	-	-	5	μΑ	
Cin	Input Capacitance	f= 1MHz	-	45	-	pF	

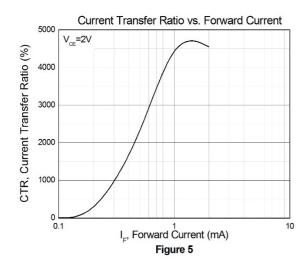
Detector Characteristics

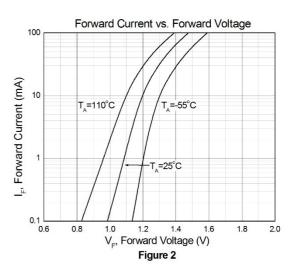
Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
B _{VCEO}	Collector-Emitter Breakdown	I _C = 100μA	350	-	-	V	
Bveco	Emitter-Collector Breakdown	I _E = 100μA	0.1	-	-	V	
I _{CEO}	Collector-Emitter Dark Current	V _{CE} = 200V, I _F =0mA	-	-	100	nA	

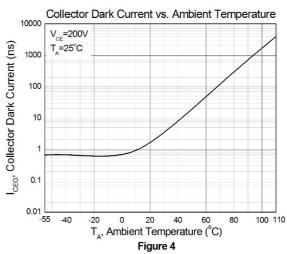
Transfer Characteristics

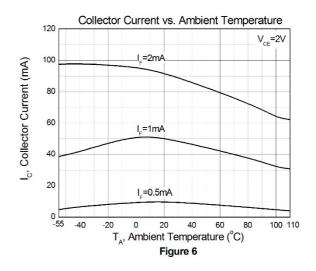

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
CTR	Current Transfer Ratio	I _F = 1mA, V _{CE} = 2V	1000		15000	%	
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	I _F = 20mA, I _C = 100mA	-	-	1.2	٧	
Rio	Isolation Resistance	V _{IO} = 500V _{DC}	5x10 ¹⁰			Ω	
Cıo	Isolation Capacitance	f= 1MHz		0.6		рF	

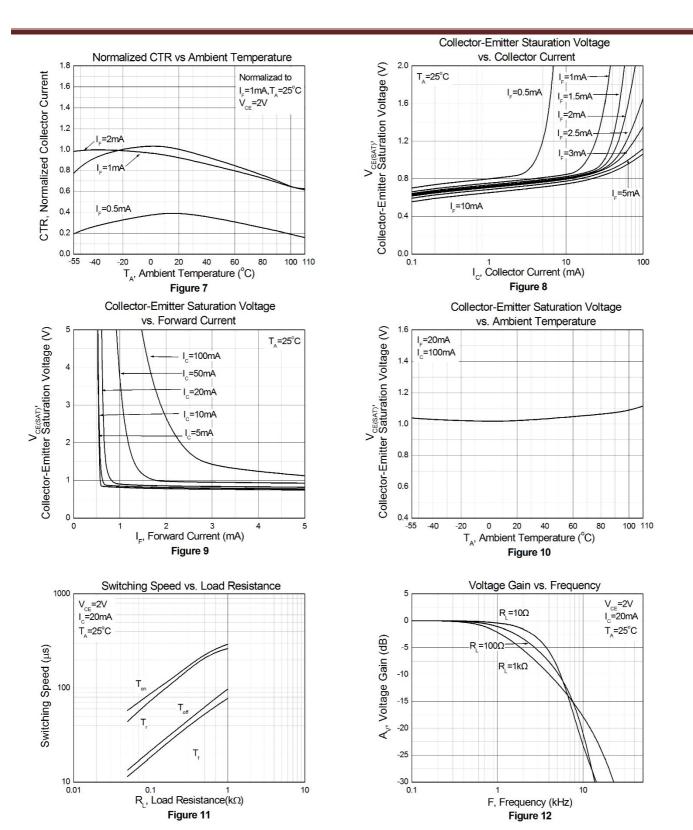

Switching Characteristics

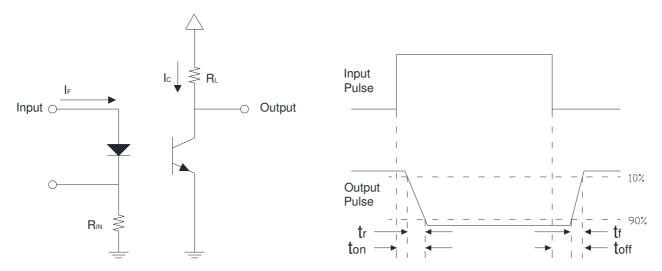

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
t _r	Rise Time	L. 2mA V 2V D. 1000	-	-	250	0	
tf	Fall Time	$I_C=2mA$, $V_{CE}=2V$, $R_L=100\Omega$	-	-	95	μS	




Typical Characteristic Curves







Test Circuit

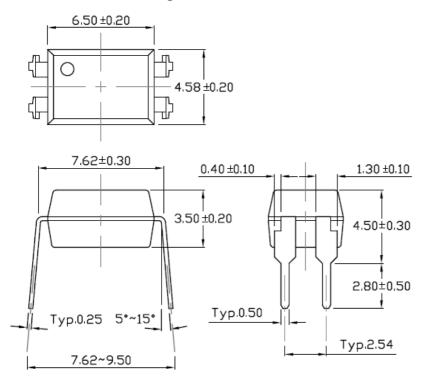
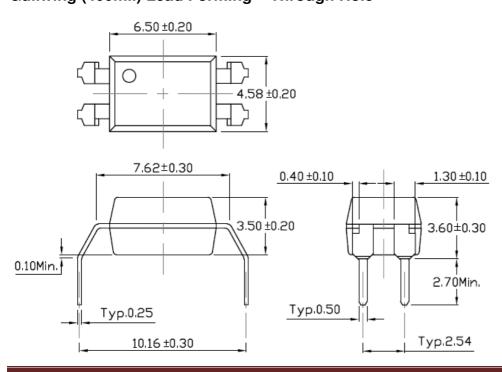
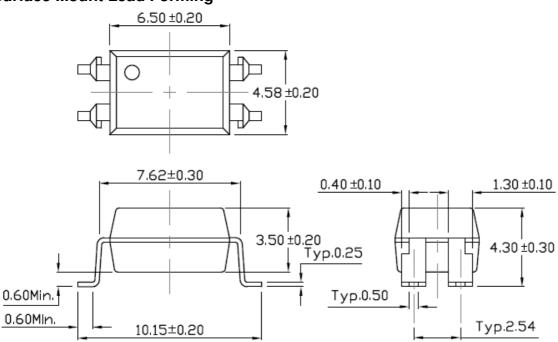


Figure 13: Switching Time Test Circuits

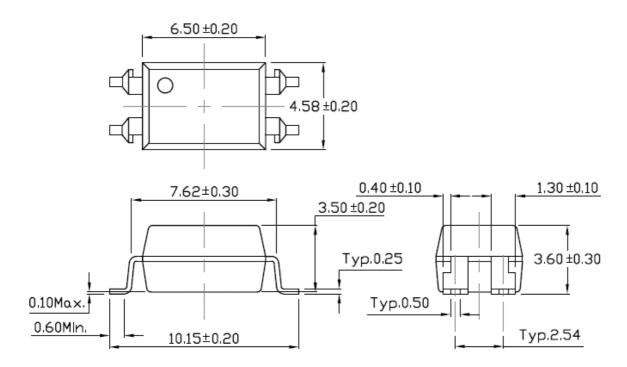


Package Dimension Dimensions in mm unless otherwise stated

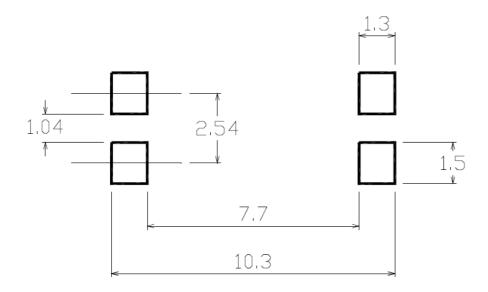
Standard DIP - Through Hole



Gullwing (400mil) Lead Forming - Through Hole



Surface Mount Lead Forming



Surface Mount (Low Profile) Lead Forming

Recommended Solder Mask Dimensions in mm unless otherwise stated

Marking Information

Note:

CT : Denotes "CT Micro"

852 : Product Number

R : CTR Rank
Y : Fiscal Year
WW : Work Week

D : Production Code

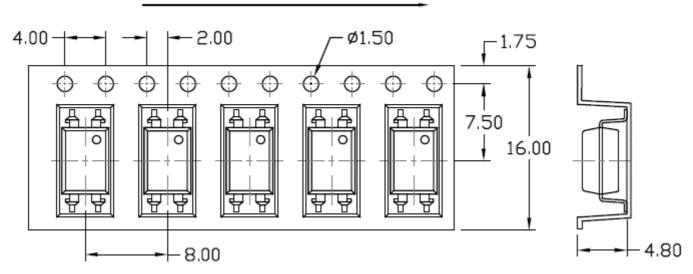
Ordering Information

CT852(Y)(Z)-G

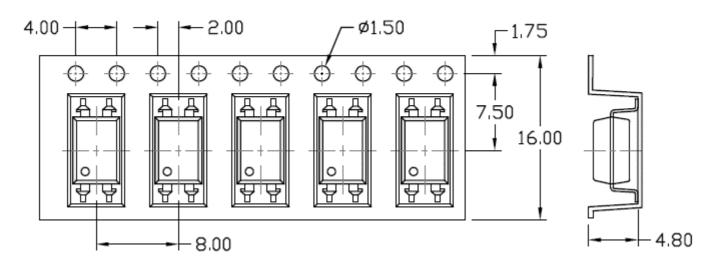
Y = Lead form option (S, SL, M or none)

Z = Tape and reel option (T1, T2 or none)

G= Material option (G: Green, None: Non-green)

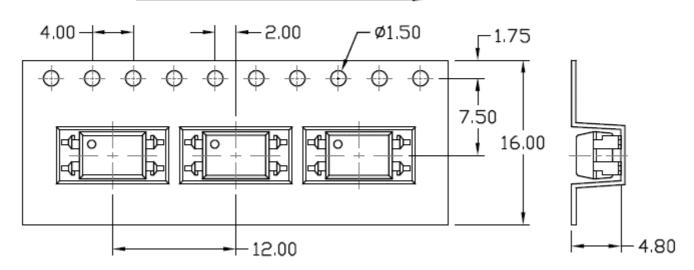

Option	Description	Quantity
None	Standard 4 Pin Dip	100 Units/Tube
M	Gullwing (400mil) Lead Forming	100 Units/Tube
S(T1)	Surface Mount Lead Forming – With Option 1 Taping	1000 Units/Reel
S(T2)	Surface Mount Lead Forming – With Option 2 Taping	1000 Units/Reel
S(T3)	Surface Mount Lead Forming – With Option 3 Taping	1000 Units/Reel
S(T4)	Surface Mount Lead Forming – With Option 4 Taping	1000 Units/Reel
SL(T1)	Surface Mount (Low Profile) Lead Forming-With Option 1 Taping	1000 Units/Reel
SL(T2)	Surface Mount (Low Profile) Lead Forming – With Option 2 Taping	1000 Units/Reel
SL(T3)	Surface Mount (Low Profile) Lead Forming-With Option 3 Taping	1000 Units/Reel
SL(T4)	Surface Mount (Low Profile) Lead Forming – With Option 4 Taping	1000 Units/Reel

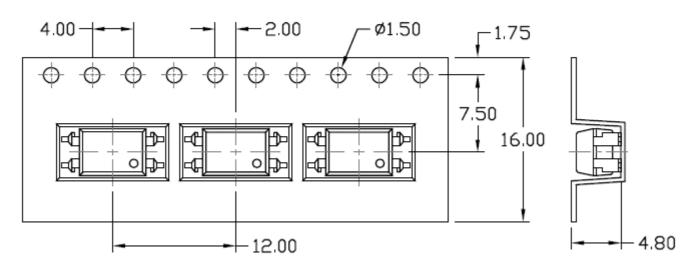
Carrier Tape Specifications Dimensions in mm unless otherwise stated


Option S(T1) & SL(T1)

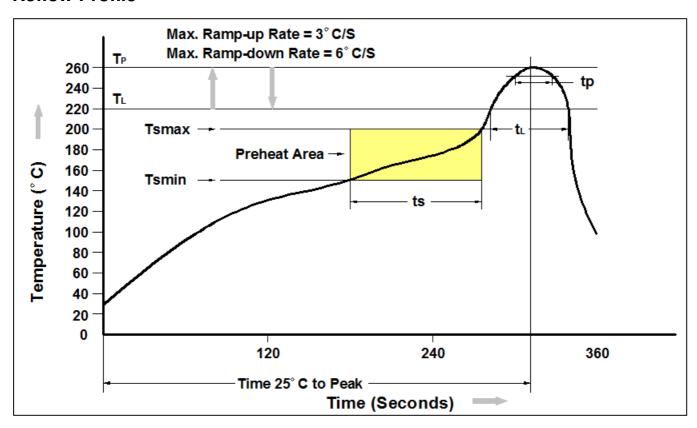
Input Direction

Option S(T2) & SL(T2)


Input Direction


Option S(T3) & SL(T3)

Input Direction


Option S(T4) & SL(T4)

Input Direction

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150℃
Temperature Max. (Tsmax)	200℃
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217℃
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260 ℃ +0 ℃ / -5 ℃
Time (t _P) within 5 °C of 260 °C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25℃ to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.